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Abstract
This article presents an adaptive backstepping approach
to the longitudinal (γ, α,Q) control of an aircraft that
directly accommodates magnitude, rate, and bandwidth
constraints on the aircraft states and the actuator sig-
nals. The article includes design of the control law, Lya-
punov analysis of the stability properties of the closed
loop system, and simulation based analysis of the per-
formance.

1 Introduction
The introduction of uninhabited combat air vehicles
(UCAV’s) has generated interest in adaptive control for
aircraft that are capable of maintaining trajectory fol-
lowing control even subsequent to faults or battle dam-
age. In addition, physical limitations impose magni-
tude, rate, and bandwidth constraints on the control
surface deflections and the aircraft states. In this article,
we present analysis and simulation results for an adap-
tive backstepping approach that is designed to accom-
modate magnitude, rate, and bandwidth constraints on
the actuator signals as well as the intermediate control
variables used in the backstepping control approach.

Adaptive control has been applied to aircraft in, for ex-
ample [2, 3, 4, 14, 15, 18]. Piloted hardware in the loop
simulation and flight testing is described in [2, 4, 18].
The approach of [3, 4] used a dynamic inversion based
nonlinear controller with a neural network approximat-
ing the error in the inversion process. Adaptive back-
stepping has been applied to aircraft in for example [15].
That article did not consider the effects of saturation on
the closed loop performance.

Control signal rate and amplitude constraints in adap-
tive control are addressed in, for example, [1, 7, 9, 10,
17]. The first type of method is to completely stop adap-
tation under saturation conditions. This ad-hoc method
does prevent the tracking errors induced by actuator
constraints from corrupting the parameter adaptation,
but is undesirable as it does not allow any theoreti-
cal stability guarantees. The second set of approaches
(training signal hedging (TSH)), see e.g. [1, 9], cor-
rects the tracking error only where it is used in the pa-
rameter adaptation laws. It does not directly change

the reference input to the control loop. The third set
of of techniques, referred to as pseudo-control hedging
(PCH) [7, 10], only alters the commanded input to the
loop. The goal in PCH is to decrease the command to
the loop to a point where it is implementable without
saturation. PCH does not directly change the signal
used in the parameter adaptation laws. The work in [7]
develops and analyzes the PCH method to extend the
control approach of [3, 14] to accommodate magnitude
and rate limits on the commanded surface deflections.
Although the second and third approaches start with
radically different philosophies, for first order systems,
it can be shown that these two approaches are identical.
For higher order or nonlinear systems, the comparison
is not as straightforward.

This article presents an adaptive backstepping approach
for longitudinal control of an aircraft that has state and
actuator constraints. Both theoretical and simulation
analyses are included. A novel aspect of this approach is
the ability to accommodate magnitude, rate, and band-
width constraints on the actuator signals and each of the
intermediate control variables (i.e., aircraft state vari-
ables) used in the backstepping design. This result is of
interest in its own right. This approach has similarities
with both the TSH and PCH methods, since it corrects
both the training signal and the reference input at each
step of the backstepping procedure. Our ultimate goal
is to extend this approach to a full vehicle controller
using on-line function approximation [5, 11, 12] to ac-
commodate battle damage types of events.

2 Problem Formulation

Due to space limitations, the discussion of this article
will focus on a simplified aircraft model with the same
structure as the linearized, rigid body, aircraft longitu-
dinal dynamics [16]. The model is just complex enough
to allow a presentation and analysis of the control de-
sign approach. Since the model has the same structure
as aircraft longitudinal dynamics, the approach can be
extended to a realistic nonlinear aircraft model. This
extension is discussed further in the conclusions section.
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The model that we will consider has the form

γ̇ = Lo + Lαα

α̇ = Q − (Lo + Lαα)
Q̇ = Mo + MQQ + Mδδ,

where the (normalized1) lift force is modeled as Lo+Lαα
and the (normalized2) pitch moment is modeled as
Mo + MQQ + Mδδ. In this expression, γ is the flight
path angle, α is the angle of attack, Q is the pitch rate,
and δ is the control surface deflection. At an operating
point, Lo, Lα, Mo, MQ and Mδ are unknown, constant,
scalar parameters. Additional terms can be added to
the lift or moment models without changing the theo-
retical approach. Most importantly, the approach di-
rectly extends to the case where multiple independent
surfaces are available. These generalizations are not in-
cluded here due to space limitations.

The corresponding tracking error dynamic equations are

˙̃γ = Lo + Lα (αc + α̃) − γ̇c

˙̃α = − (Lo + Lαα) + Qc + Q̃ − α̇c

˙̃Q = Mo + MQQ + Mδδ − Q̇c

where the tracking errors are defined as γ̃ = γ − γc,
α̃ = α − αc, Q̃ = Q − Qc.

Our goal is to generate a backstepping controller that
will cause γ to track an input signal γc. We assume that
γc is smooth and that γ̇c is known. In the backstepping
approach, the γ controller will generate a commanded
value α0

c for α. An α controller will generate a Q0
c com-

mand for Q. The Q controller will generate the control
surface command δ0

c to achieve the Q command.

Since an aircraft operating envelope includes constraints
on both actuators and states, the controller must work
in the presence of magnitude, rate, and bandwidth lim-
its on δ as well as operating envelope constraints on
Q and α. In the formulation to follow, we will treat
(Lo, Lα,Mo,MQ,Mδ) as parameters to be identified.
Therefore, we are implementing adaptive backstepping
with control variable and state constraints. In the ac-
tual application, this set of linearization ‘parameters’ is
a function of the operating conditions. Since the oper-
ating condition is slowly time varying, the adaptive laws
would be required to adapt the parameters to match the
local model. In the final full vehicle implementation,
these ‘linearized parameters’ would be approximated as
a function of the flight condition.

1To simplify the notation, the 1
mV

factor at the operating point
is included in the lift function.

2To simplify the notation, the 1
Iyy

factor is included in the

moment function.

3 Adaptive Backstepping with Saturation
The backstepping control laws are summarized below.
The operating envelope requires α to remain in the in-
terval [αL

c , αU
c ] and Q to remain in the interval [QL

c , QU
c ].

The actuator design requires δ to remain in the interval
[δL

c , δU
c ]. In addition, the actuator design will impose

rate and bandwidth limitations on δ, which in turn will
result in rate and bandwidth limitations on the inter-
mediate variables Qc and αc. The above operating en-
velope and surface deflection constraints are assumed to
be known and fixed.

The nominal backstepping commands are

α0
c =

1
L̂α

(
−L̂o + γ̇c − kγ γ̃ + ηγ

)
− χα

Q0
c =

(
L̂o + L̂αα

)
− kαα̃ + ηα + α̇c − γ̄L̂α − χQ

δ0
c =

1
M̂δ

(
−M̂o − M̂QQ − kQQ̃ + ηQ − ᾱ + Q̇c

)

with kγ , kα, kQ > 0. The robustifying terms (ηγ , ηα, ηQ)
are motivated in the proof of the theorem to follow. The
amplitude, rate, and bandwidth limited control signals
can be defined by

eα =
(
sat

(
α0

c , α
L
c , αU

c

) − xα1

)
[

ẋα1

ẋα2

]
=

[
0 1
0 −2ζαωnα

] [
xα1

xα2

]

+
[

0
ω2

nα

]
sat(eα,−Lα, Lα)

[
αc

α̇c

]
=

[
1 0
0 1

] [
xα1

xα2

]

where the parameters of this filter are defined below. In
this filter, eα is the error between the first filter state
and the magnitude limited filter input. Since the first
state of the filter is used in the computation of eα, the
characteristic equation of the filter is s2 + 2ζαωnα

s +
ω2

nα
= 0, in the linear portion of the two sat functions.

The sat function in the second equation enforces the
rate limit. At the filter output, αc is magnitude, rate,
and bandwidth limited. The command filters for Qc

and δc are defined similarly as

eQ =
(
sat

(
Q0

c , Q
L
c , QU

c

) − xQ1

)
[

ẋQ1

ẋQ2

]
=

[
0 1
0 −2ζQωnQ

] [
xQ1

xQ2

]

+
[

0
ω2

nQ

]
sat(eQ,−LQ, LQ)

[
Qc

Q̇c

]
=

[
1 0
0 1

] [
xQ1

xQ2

]



eδ =
(
sat

(
δ0
c , δL

c , δU
c

) − xδ1

)
[

ẋδ1

ẋδ2

]
=

[
0 1
0 −2ζδωnδ

] [
xδ1

xδ2

]

+
[

0
ω2

nδ

]
sat(eδ,−Lδ, Lδ)

[
δc

]
=

[
1 0

] [
xδ1

xδ2

]
.

In these expressions, Lα = 2ζαRα

ω2
nα

, LQ = 2ζQRQ

ω2
nQ

,

Lδ = 2ζδRδ

ω2
nδ

and (Rα, RQ, Rδ) are rate limits on (α,Q, δ),

respectively; (ωnα
, ωnQ

, ωnδ
) are bandwidth limits on

(α,Q, δ); (αU
c , QU

c , δU
c ) are upper limits on (α,Q, δ);

(αL
c , QL

c , δL
c ) are lower limits on (α,Q, δ), and sat de-

notes the saturation function that is linear with unity
slope between its lower and upper limits. This para-
graph has presented one command filter approach,
many other filters are possible without affecting the va-
lidity of the stability proofs. If the surface position can
be measured, then the last filter is not required. Also
the parameters of the above filters are not completely
independent. For example, since the derivative of α is
closely related to Q, the rate limit Rα should be less
than or equal to the magnitude limit QU

c .

The vector χ = [χγ(t), χα(t), χQ(t)] is generated by

χ̇γ = −kγχγ + L̂α

(
αc − α0

c

)
χ̇α = −kαχα +

(
Qc − Q0

c

)
χ̇Q = −kQχQ + M̂δ

(
δc − δ0

c

)
.

These signals are filtered versions of the effect of state
and control rate, bandwidth, and magnitude constraints
on the variable that is being controlled. Finally, we de-
fine the vector of modified tracking errors x̄ = [γ̄, ᾱ, Q̄]
as

γ̄ = γ̃ − χγ

ᾱ = α̃ − χα

Q̄ = Q̃ − χQ.

When there is no control variable saturation, x̄ con-
verges to x̃. In the presence of state and control vari-
able constraints, the signal χ is designed to remove the
effects of the saturation from x̃ to generated x̄, which
will be used in the parameter adaptation laws. The
parameter adaptation laws are:

˙̂
Mo = Γ3Q̄

˙̂
Lo = Γ1 (γ̄ − ᾱ) (1)

˙̂
MQ = Γ4Q̄Q

˙̂
Lα = Γ2 (γ̄ − ᾱ) α (2)

˙̂
Mδ = Γ5Q̄δ, (3)

where Γi for i = 1, . . . , 5 are positive adaptation gains.
The subsequent sections will show that the above con-
trol laws are stable even in the presence of state and

control rate, bandwidth, and magnitude constraints. In
an implementation, deadzones should be used to avoid
parameter drift due to noise; and, projection methods
must be used to ensure that the estimation transient
does not cause L̂α or M̂δ to change sign.

4 Tracking Error Dynamics
Representing the actual parameters as the estimated pa-
rameter minus parameter estimation error: Lo = L̂o −
L̃o, Lα = L̂α − L̃α, Mo = M̂o − M̃o, MQ = M̂Q − M̃Q,
Mδ = M̂δ − M̃δ; the dynamics of the modified tracking
errors are

˙̄γ = ˙̃γ − χ̇γ

= (Lo + Lαα − γ̇c) −
(
−kγχγ + L̂α

(
αc − α0

c

))

= L̂o + L̂α

(
α0

c + α̃
) − γ̇c − L̃o − L̃αα + kγχγ

= −kγ γ̄ + L̂αᾱ − L̃o − L̃αα + ηγ (4)
˙̄α = ˙̃α − χ̇α

= −kαᾱ + L̃o + L̃αα − γ̄L̂α + Q̄ + ηα (5)
˙̄Q = ˙̃Q − χ̇Q

= −kQQ̄ − ᾱ − M̃o − M̃QQ − M̃δδ + ηQ. (6)

The final numbered equations will be used in the sub-
sequent stability analysis.

5 Lyapunov Analysis
The objective of this section is to prove the stability
of the closed loop system using Lyapunov-like methods.
The results are summarized in the following theorem.

Theorem 5.1 The closed loop system with dynamics
described in Section 2 and controller described in Section
3 has the following properties:

1. L̃o, L̃α, M̃o, M̃Q, M̃δ ∈ L∞

2. γ̄, ᾱ, and Q̄ ∈ L∞

3. γ̄, ᾱ, and Q̄ converge to zero with γ̄, ᾱ, and Q̄ ∈
L2.

In addition, although we do not show it here, it is possi-
ble to show that given certain persistence of excitation
conditions, the parameter errors converge exponentially
to zero.

Proof: Define the γ-Lyapunov function as

V =
1
2

(
γ̄2 + ᾱ2 + Q̄2

)
+

1
2
Θ̃T Γ−1Θ̃

where ΘT = [Lo, Lα,Mo,MQ,Mδ], Θ̂ is the estimate of
Θ, and Θ̃ = Θ̂ − Θ. Taking the time derivative of V,
using eqns. (4-6) to eliminate ( ˙̄γ, ˙̄α, ˙̄Q), and using eqns.



(1-3) to eliminate ˙̃Θ, after some algebraic manipulations
yields

V̇ = −kQQ̄2 − kαᾱ2 − kγ γ̄2

+γ̄ηγ + ᾱηα + Q̄ηQ. (7)

Therefore, the designer selects (ηγ , ηα, ηQ) as odd, dif-
ferentiable functions with sign opposite to (γ̄, ᾱ, Q̄), re-
spectively. The magnitude of these robustifying terms
would be selected to ensure boundedness of tracking er-
rors in the presence of model error, measurement noise,
or disturbances. For the results of Section 6, all three
of these terms are set to zero.

Since V(t) is nonincreasing, we conclude that
(Q̄, ᾱ, γ̄, Θ̃T ) are each bounded. Barbalat’s Lemma im-
plies that the origin of the (Q̄, ᾱ, γ̄) variables is asymp-
totically stable. Finally, because 0 ≤ V(t) ≤ V(0), inte-
gration of both sides of (7) shows that (Q̄, ᾱ, γ̄) ∈ L2.♦
This theorem shows that even when the nominal com-
mands (α0

c , Q
0
c , δ

0) exceed the state and control limita-
tions, the quantities x̄ = [γ̄, ᾱ, Q̄]T and Θ̃ do not di-
verge. In fact, the cumulative norm of these quantities
as defined by

√V (t) will never increase. Nothing is
proved about the tracking error x̃, which may increase
during periods when the state or control limitations are
in effect, because the desired control signal is not being
implemented (i.e., uc 6= u0

c). The vector χ is defined to
remove from x̃ the portion of the tracking error that is
due to violation of the state or control signal limitations.
The compensated error x̄ is used to adapt the parame-
ters, even during periods in which the state or control
signal limitations prevent implementation of the desired
control signals. When the state or control signal limi-
tations are not in effect, (i.e., uc = u0

c), χ approaches
zero, and x̃ converges towards x̄.

6 Simulation Example
This section analyzes results from a simulation example.
The parameters for the simulation were defined in Table
1. The control gains are selected to enforce a time scale
separation between the three loops of the backstepping
controller. The section contains two sets of results. The
first set of results pertain to a situation where saturation
does not occur. The second set of results pertain to a
situation where significant saturation occurs in all three
control loops. The parameters of the command filters
defined in Section 3 are ζα = ζQ = 1, ωnα

= kα, and
ωnQ

= kQ.

6.1 Example: No saturation
For this set of simulations, γr is a 25s square wave with
peak magnitude of ±5 deg. The commands γc and γ̇c

are the states of a second order, relative degree two,
unity gain prefilter with ζ = 1, and ωn = kγ .

Figure 1 contains plots of the states and actuator signal
for the first and last 25 seconds of a 150 s simulation.

Each graph contains three curves. The dotted curve is
the command. The solid curve is the magnitude, rate,
and bandwidth limited command. The dashed curve
is the actual state or actuator variable. Even though
the initial parameter error is large, the transient in the
control response is reasonable. Figure 2 includes graphs
of the three components of x̃ in the left column and the
three components of x̄ in the right column. Note that
as the theory predicted, since there is no saturation,
x̃ → x̄ → 0.

The convergence of x̄ to zero is not monotonic. How-
ever, the Lyapunov function is non-increasing. The left
column of Figure 3 plots the norm of the parameter er-
ror, the norm of x̄, and the norm defined by the square
root of the Lyapunov function. Notice that although
the norm of x̄ is both increasing and decreasing, the
Lyapunov function never increases. The right column
of Figure 3 plots each component of Θ̂.

6.2 Example: Substantial Saturation
For this set of simulations, γr is a 25s square wave with
peak magnitude of ±10 deg. The commands γc and γ̇c

are the states of a second order, relative degree two,
unity gain prefilter with ζ = 1, and ωn = kγ .

Figure 4 contains plots of the states and actuator signal
for the first and last 25 seconds of a 150 s simulation.
Even though the initial parameter error is large, the
transient in the control response is reasonable. Note
that the large γ commands result in rate, magnitude,
or bandwidth constraining the αc, Qc, and δc variables.
Figure 5 includes graphs of the three components of x̃
in the left column and the three components of x̄ in the
right column. Note that as the theory predicted, since
there is saturation, x̄ → 0, but x̃ does not converge to
zero. In spite of this fact, the parameter estimates con-
verge toward the correct values. In fact, as shown in
the right column of Figure 6, the parameters converge
faster than they did in Figure 3. There is a significantly
higher level of excitation in the present example, but
the parameter estimates will only converge if the train-
ing error is properly compensated to remove the effects
of the rate, magnitude, and bandwidth limitations on
the control signals. The left column of Figure 6 contains
plots of the norm of the parameter error, the norm of
x̄, and the norm defined by the square root of the Lya-
punov function. Note that the Lyapunov function is
non-increasing even during the periods of saturation.

7 Conclusions
This article has presented and analyzed an adaptive
backstepping approach to the control of longitudinal
aircraft dynamics that directly accommodates magni-
tude, rate, and bandwidth limits on the aircraft states
and actuators. For this preliminary analysis, we have
only considered a linearized aircraft point design. Due
to the positive analysis of the performance, we are cur-



rently extending this research in four directions. First,
we are extending the adaptive state and actuator con-
strained backstepping control approach to include con-
trol of lateral-directional dynamics. Second, we are ex-
tending the linearized adaptive approach to a nonlin-
ear on-line function approximation based approach [6].
Third, we are extending the theoretical analysis as a
general extension of the backstepping approach[13]. Fi-
nally, we have extended the results presented herein to
the case where the vehicle has multiple, redundant and
independent actuators.
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Table 1: Simulation Parameters: The first row of cells defines the parameters of the model. The second and third rows of
cells define controller parameters. The fourth row of cells defines the state constraints and saturation limits.

Parameter: Lo Lα Mo MQ Mδ

Value: -0.1 1.0 0.1 -0.02 1.0
Parameter: Γ1 Γ2 Γ3 Γ4 Γ5

Value: 0.4 16.0 4.0 20.0 30.0
Parameter: kγ kα kQ

Value: 1.3 3.0 30.0
Parameter: αL

c αU
c Qc limits δc limits

Value: -8.0 deg 15 deg ± 15 deg
s ± 45 deg

0 50 100 150
−2

−1

0

1

2

γ ti
ld

e
, 

d
e

g

time, s

0 50 100 150
−2

0

2

4

α
ti
ld

e
, 

d
e

g

time, s

0 50 100 150
−1

−0.5

0

0.5

1

Q
ti
ld

e
, 

d
e

g
/s

time, s

(a) Tracking errors x̃.
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(b) Tracking errors x̄.

Figure 2: Plots of the aircraft tracking errors for γr ∈ ±5 deg.
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(a) Lyapunov quantities.
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(b) Parameter estimates.

Figure 3: For γr ∈ ±5 deg: Left top - Plot of
√

Θ̃(t)T Γ−1Θ̃(t) versus t. Left middle - Plot of ‖x̄‖ versus t. Left bottom -

Plot of
√V(t) versus t. Right - Plots of each component of Θ̂ versus t.
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(a) Initial state and control

125 130 135 140 145 150
−15

−10

−5

0

5

10

15

γ, 
de

g

time, s
125 130 135 140 145 150

−10

−5

0

5

10

15

20

α,
 d

eg

time, s

125 130 135 140 145 150
−20

−10

0

10

20

Q
, d

eg
/s

time, s
125 130 135 140 145 150

−50

0

50

δ,
 d

eg

time, s

(b) Final state and control

Figure 4: Plots of the aircraft state and control at the beginning and end of a 150 s simulation for γr ∈ ±10 deg: magnitude
limited command (dotted), filtered command (solid), actual (dashed)
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(a) Tracking errors x̃.
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(b) Tracking errors x̄.

Figure 5: Plots of the aircraft tracking errors for γr ∈ ±10 deg.
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(a) Lyapunov quantities.
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(b) Parameter estimates.

Figure 6: For γr ∈ ±5 deg: Left top - Plot of
√

Θ̃(t)T Γ−1Θ̃(t) versus t. Left middle - Plot of ‖x̄‖ versus t. Left bottom -

Plot of
√V(t) versus t. Right - Plots of each component of Θ̂ versus t.


